Токи при замыкании и размыкании цепи.

При всяком изменении силы тока в проводящем контуре возникает э. д. с. самоиндук­ции, в результате чего в контуре появляются дополнительные токи, называемые экстратоками самоиндукции. Экстратоки самоиндукции, согласно правилу Ленца, все­гда направлены так, чтобы препятствовать изменениям тока в цепи, т. е. направлены противоположно току, создаваемому источником. При выключении источника тока экстратоки имеют такое же направление, что и ослабевающий ток. Следовательно, наличие индуктивности в цепи приводит к замедлению исчезновения или установления тока в цепи.

Рассмотрим процесс выключения тока в цепи, содержащей источник тока с э.д.с. Токи при замыкании и размыкании цепи. - student2.ru , резистор сопротивлением R и катушку индуктивностью L. Под действием внешней э. д. с. в цепи течет постоянный ток

Токи при замыкании и размыкании цепи. - student2.ru

(внутренним сопротивлением источника тока пренебрегаем).

В момент времени t=0 отключим источник тока. Ток в катушке индуктивностью L начнет уменьшаться, что приведет к возникновению э.д.с. самоиндукции Токи при замыкании и размыкании цепи. - student2.ru препятствующей, согласно правилу Ленца, уменьшению тока. В каждый момент време­ни ток в цепи определяется закономОмаI= Токи при замыкании и размыкании цепи. - student2.ru s/R, или

Токи при замыкании и размыкании цепи. - student2.ru (127.1)

Разделив в выражении (127.1) переменные, получим Токи при замыкании и размыкании цепи. - student2.ru Интегрируя это уравнение по I (от I0 до I) и t (от 0 до t), находим ln (I /I0) = –Rt/L, или

Токи при замыкании и размыкании цепи. - student2.ru (127.2)

где t=L/R — постоянная, называемаявременем релаксации. Из (127.2) следует, что t есть время, в течение которого сила тока уменьшается в е раз.

Таким образом, в процессе отключения источника тока сила тока убывает по экспоненциальному закону (127.2) и определяется кривой 1 на рис. 183. Чем больше индуктивность цепи и меньше ее сопротивление, тем больше t и, следовательно, тем медленнее уменьшается ток в цепи при ее размыкании.

При замыкании цепи помимо внешней э. д. с. Токи при замыкании и размыкании цепи. - student2.ru возникает э. д. с. самоиндукции Токи при замыкании и размыкании цепи. - student2.ru препятствующая, согласно правилу Ленца, возрастанию тока. По закону Ома, Токи при замыкании и размыкании цепи. - student2.ru или

Токи при замыкании и размыкании цепи. - student2.ru

Введя новую переменную Токи при замыкании и размыкании цепи. - student2.ru преобразуем это уравнение к виду

Токи при замыкании и размыкании цепи. - student2.ru

где t — время релаксации.

Токи при замыкании и размыкании цепи. - student2.ru

В момент замыкания (t=0) сила тока I = 0 и u = – Токи при замыкании и размыкании цепи. - student2.ru . Следовательно, интегрируя по и (от – Токи при замыкании и размыкании цепи. - student2.ru до IR– Токи при замыкании и размыкании цепи. - student2.ru ) и t (от 0 до t), находим ln[(IR– Токи при замыкании и размыкании цепи. - student2.ru )]/– Токи при замыкании и размыкании цепи. - student2.ru = —t/t, или

Токи при замыкании и размыкании цепи. - student2.ru (127.3)

где Токи при замыкании и размыкании цепи. - student2.ru— установившийся ток (при t®¥).

Таким образом, в процессе включения источника тока нарастание силы тока в цепи задается функцией (127.3) и определяется кривой 2 на рис. 183. Сила тока возрастает от начального значения I=0 и асимптотически стремится к установившемуся значению Токи при замыкании и размыкании цепи. - student2.ru . Скорость нарастания тока определяется тем же временем релаксации t=L/R, что и убывание тока. Установление тока происходит тем быстрее, чем меньше индук­тивность цепи и больше ее сопротивление.

Оценим значение э.д.с. самоиндукции Токи при замыкании и размыкании цепи. - student2.ru , возникающей при мгновенном увеличении сопротивления цепи постоянного тока от R0 до R. Предположим, что мы размыкаем контур, когда в нем течет установившийся ток Токи при замыкании и размыкании цепи. - student2.ru . При размыкании цепи ток изменяется по формуле (127.2). Подставив в нее выражение для I0 и t, получим

Токи при замыкании и размыкании цепи. - student2.ru

Э.д.с. самоиндукции

Токи при замыкании и размыкании цепи. - student2.ru

т. е. при значительном увеличении сопротивления цепи (R/R0>>1), обладающей боль­шой индуктивностью, э.д.с. самоиндукции может во много раз превышать э.д.с. источника тока, включенного в цепь. Таким образом, необходимо учитывать, что контур, содержащий индуктивность, нельзя резко размыкать, так как это (возникнове­ние значительных э.д.с. самоиндукции) может привести к пробою изоляции и выводу из строя измерительных приборов. Если в контур сопротивление вводить постепенно, то э.д.с. самоиндукции не достигнет больших значений.

Магнитные моменты атомов.

Рассматривая действие магнитного поля на проводники с током и на движущиеся заряды, мы не интересовались процессами, происходящими в веществе. Свойства среды учитывались формально с помощью магнитной проницаемости m. Для того чтобы разобраться в магнитных свойствах сред и их влиянии на магнитную индукцию, необходимо рассмотреть действие магнитного поля на атомы и молекулы вещества.

Опыт показывает, что все вещества, помещенные в магнитное поле, намагничива­ются. Рассмотрим причину этого явления с точки зрения строения атомов и молекул, положив в основу гипотезу Ампера, согласно которой в любом теле существуют микроскопические токи, обусловленные движением электронов в атомах и молекулах.

Для качественного объяснения магнитных явлений с достаточным приближением можно считать, что электрон движется в атоме по круговым орбитам. Электрон, движущийся по одной из таких орбит, эквивалентен круговому току, поэтому он обладаеторбитальным магнитным моментом (см. (109.2)) pm=ISn, модуль которого

Токи при замыкании и размыкании цепи. - student2.ru (131.1)

где I=en — сила тока, n — частота вращения электрона по орбите, S — площадь орбиты. Если электрон движется по часовой стрелке (рис. 187), то ток направлен против часовой стрелки и вектор рm (в соответствии с правилом правого винта) направлен перпендикулярно плоскости орбиты электрона, как указано на рисунке.

С другой стороны, движущийся по орбите электрон обладает механическим момен­том импульса Le, модуль которого,

Токи при замыкании и размыкании цепи. - student2.ru (131.2)

где v = 2pn, pr2 = S. Вектор Le (его направление также определяется по правилу правого винта) называется орбитальным механическим моментом электрона.

Из рис. 187 следует, что направления рm и Le, противоположны, поэтому, учитывая выражения (131.1) и (131.2), получим

Токи при замыкании и размыкании цепи. - student2.ru (131.3)

где величина

Токи при замыкании и размыкании цепи. - student2.ru (131.4)

называется гиромагнитным отношением орбитальных моментов (общепринято писать со знаком «–», указывающим на то, что направления моментов противоположны). Это отношение, определяемое универсальными постоянными, одинаково для любой ор­биты, хотя для разных орбит значения v и r различны. Формула (131.4) выведена для круговой орбиты, но она справедлива и для эллиптических орбит.

Экспериментальное определение гиромагнитного отношения проведено в опытах Эйнштейна и де Гааза* (1915), которые наблюдали поворот свободно подвешенного на тончайшей кварцевой нити железного стержня при его намагничении во внешнем магнитном поле (по обмотке соленоида пропускался переменный ток с частотой, равной частоте крутильных колебаний стержня). При исследовании вынужденных крутильных колебаний стержня определялось гиромагнитное отношение, которое ока­залось равным –(e/m). Таким образом, знак носителей, обусловливающих молекуляр­ные токи, совпадал со знаком заряда электрона, а гиромагнитное отношение оказалось в два раза большим, чем введенная ранее величина g (см. (131.4)). Для объяснения этого результата, имевшего большое значение для дальнейшего развития физики, было предположено, а впоследствии доказано, что кроме орбитальных моментов электрон обладает собственным механическим моментом импульса Les, называ­емым спином. Считалось, что спин обусловлен вращением электрона вокруг своей оси, что привело к целому ряду противоречий. В настоящее время установлено, что спин является неотъемлемым свойством электрона, подобно его заряду и массе. Спину электрона Les, соответствует собственный (сотовый) магнитный момент рms, пропорци­ональный Les и направленный в противоположную сторону:

Токи при замыкании и размыкании цепи. - student2.ru (131.5)

Величина gs называетсягиромагнитным отношением спиновых моментов.

Проекция собственного магнитного момента на направление вектора В может принимать только одно из следующих двух значений:

Токи при замыкании и размыкании цепи. - student2.ru

где ħ=h/(2p) (h—постоянная Планка), mb—магнетон Бора, являющийся единицей магнитного момента электрона.

В общем случае магнитный момент электрона складывается из орбитального и спинового магнитных моментов. Магнитный момент атома, следовательно, складывается из магнитных моментов входящих в его состав электронов и магнитного момента ядра (обусловлен магнитными моментами входящих в ядро протонов и ней­тронов). Однако магнитные моменты ядер в тысячи раз меньше магнитных моментов электронов, поэтому ими пренебрегают. Таким образом, общий магнитный момент атома (молекулы) pa равен векторной сумме магнитных моментов (орбитальных и спиновых) входящих в атом (молекулу) электронов:

Токи при замыкании и размыкании цепи. - student2.ru (131.6)

Наши рекомендации