Преобразователи на микросхемах

Смеситель на ОУ. Смеситель (рис. 14.9) построен на двух ОУ. Оба входа смесителя равнозначны. Усилители имеют одинако­вые коэффициенты усиления, равные 10. На любой из входов мож­но подавать сигналы гетеродина и преобразуемый. При высокой сте­пени совпадения коэффициентов усиления можно получить подавле­ние сигналов основной частоты более 80 дБ. Для сигнала гетероди­на 50 мВ и входного сигнала 20 мВ выходной сигнал равен 50 мВ. Смеситель работает в широком диапазоне частот, начиная с очень низких частот. Верхняя граничная частота определяется предельной частотой работы ОУ.

Смеситель на интегральной микросхеме К122УД1Б.В смесите­ле (рис. 14.10, а) контур L1, С5, С6 настроен на промежуточную ча­стоту. Полоса пропускания контура около 50 кГц на частоте 465 кГц. Коэффициент усиления на этой частоте равен 3, а на частоте 20 МГц — 1,6. Оптимальный режим преобразования достига­ется при напряжении гетеродина 50 мВ. На рис. 14.10, б приведена зависимость коэффициента передачи смесителя от напряжения гете­родина и частоты.

преобразователи на микросхемах - student2.ru

Рис. 14.9

Преобразователь частоты на интегральной микросхеме К157УС2. В преобразователе (рис. 14.11) частота гетеродина определяется параметрами контура L3, С9. Для устранения паразитных колеба­ний в гетеродине включена цепочка R3, С8. Контур L2, С4, под­ключенный к выводам 10, 12 микросхемы, настраивается на про­межуточную частоту. Коэффициент усиления в режиме преобразо­вания находится в интервале 150 — 350. Коэффициент шума на про­межуточной частоте не более 6 дБ. Гетеродин, настроенный на ча­стоту 15 МГц, выдает сигнал с амплитудой 300 — 450 мВ. Для уп­равления коэффициентом усиления по входу 13 подается сигнал АРУ с напряжением от 0 до 6 В. Для микросхемы К157УС2Б часто­ту гетеродина можно повысить до 25 МГц.

Преобразователь частоты на интегральной микросхеме К235ПС1. Преобразователь (рис. 14.12) имеет в диапазоне частот 10 — 100 МГц коэффициент усиления 0,02. Динамический диапазон входного сигнала равен 60 дБ при чувствительности 10 мкВ. Пере­стройка преобразователя по частоте осуществляется конденсато­ром С2 и индуктивностью L1.

преобразователи на микросхемах - student2.ru преобразователи на микросхемах - student2.ru

Рис. 14.10 Рис. 14.11

преобразователи на микросхемах - student2.ru преобразователи на микросхемах - student2.ru

Рис. 14.12 Рис. 14.13

преобразователи на микросхемах - student2.ru

Рис 14.14

преобразователи на микросхемах - student2.ru

Рис. 14.15

Смеситель на интегральной микросхеме К140МА1. Смеситель-перемножитель сигналов на микросхеме К140МА1 (рис. 14.13) ра­ботает до частот 50 МГц. Исследуемый сигнал подается на Вход 1. Опорный сигнал с амплитудой 100 мВ и частотой 20 МГц дейст­вует на Вход 2. На выходе имеем парафазный сигнал с частотами todbcoo. Точность перемножения сигналов составляет 5 — 10%. Ам­плитуда входного сигнала может меняться от 0 до 0,3 В.

Смеситель-гетеродин тракта ЧМ. Преобразователь построен на основе интегральной микросхемы К224ЖА1 (рис. 14.14, а). Гетеро­дин построен по схеме емкостной трехточки (рис. 14.14, б). Сигнал гетеродина снимается с отвода индуктивности и подается в эмит­тер транзистора смесителя через конденсатор С5. Напряжение ге­теродина равно 100 — 150 мВ. При этом сигнале коэффициент усиле­ния преобразователя максимален. С помощью конденсатора СЗ можно менять частоту гетеродина в пределах 30 — 50 МГц. Индук­тивность L1 имеет 6 витков, диаметр 7 мм, провод ПЭВ-0,51. Ко­эффициент усиления равен 0,14. На основе микросхемы К224ЖА1 можно создать устройства с оабочей частотой до 100 МГц.

Смеситель-гетеродин тракта AM. Преобразователь построен на основе интегральной микросхемы К224ЖА2 (рис. 14.15, а). Гетеро­дин (рис. 14.15, б) собран на контуре LI C1. Сигнал гетероди-на через конденсатор СЗ поступает на вход смесителя. На другой вход смесителя подается входной сигнал. Смеситель нагружается на контур L3, С5, который настро­ен на частоту 2 МГц. Микро­схема имеет следующие пара­метры: -крутизна смесительно­го каскада для 10 МГц и R„=10О Ом равна 18 мА/В. Входное сопротивление 150 Ом. Диапазон рабочих частот 0,15 — 30 МГц. Неравномер­ность частотной характеристи­ки в этом диапазоне частот б дБ.

преобразователи на микросхемах - student2.ru преобразователи на микросхемах - student2.ru

Рис. 14.16 Рис. 14.17

Смеситель с перестраивае­мым гетеродином.Интеграль­ная микросхема K224ЖА2 (рис. 14.16) выполняет функции смесителя и гетеродина. Контур гетеродина состоит из катушки L1 и емкости варикапа VD. Контур настроен на частоту 100 МГц. Сигнал гетеродина подается на вход смесителя через емкость монтажа микросхемы и через конденсатор С2. Нагрузкой преобразователя является контур L2C5, настроенный на промежуточную частоту 5 МГц.

Эффективный смеситель.В основу смесителя положена интег­ральная микросхема К237ЖА1 (рис. 14.17, а). Напряжение пита­ния смесителя (рис. 14.17, б) равно 5 В. Диапазон рабочих частот 0,15 — 15 МГц. Коэффициент усиления в режиме преобразования между выводами 10 и 12 равен 150 — 350. Коэффициент шума на промежуточной частоте равен 6 дБ. Напряжение гетеродина между выводами 2 и 5 равно 300 — 450 мВ. Частота гетеродина определя­ется параметрами контура L2C7. Контур L3, С6 настраивается на промежуточную частоту 465 кГц, на эту же частоту настраивается и контур L1C1.

УМНОЖИТЕЛИ ЧАСТОТЫ

Удвоитель на составном каскаде. Устройство (рис. 14.18) собрано на двух транзисторах разной проводимости. В исходном состоянии оба транзистора закрыты. На входе действует сигнал гармонической формы. Положительная полярность входного сигна­ла открывает транзистор VT1 и закрывает транзистор VT2. Проте­кающий ток транзистора VT1 создает падение напряжения на ре­зисторах R3 и R4. На первом выходе будет сигнал, совпадающий по фазе с входным сигналом, а на втором выходе сигнал будет находиться в противофазе. При равенстве сопротивлений резисто­ров R3 и R4 амплитуды этих сигналов будут равны. Отрицательная полуволна входного сигнала закроет транзистор VT1 и откроет транзистор VT2. На Выходе 1 появится сигнал, находящийся в про­тивофазе с входным сигналом, а на Выходе 2 — будет совпадать по фазе с входным сигналом. Таким образом, при подаче на вход си­нусоидального сигнала на Выходе 1 все полуволны будут положи­тельными, а на Выходе 2 — отрицательными. Удвоитель работает в диапазоне частот от 200 Гц до 20 кГц.

преобразователи на микросхемах - student2.ru преобразователи на микросхемах - student2.ru

Рис. 14.18 Рис. 14.19

Транзисторный удвоитель. Удвоитель (рис. 14.19) состоит из двух транзисторов. Первый транзистор работает в схеме с коллекторно-эмиттерной нагрузкой, и коэффициент передачи его равен единице. Второй транзистор работает в схеме с ОБ. Входной сигнал создает в эмиттере VT2 ток, который на коллекторной нагрузке R3 создает напряжение, равное по амплитуде входному напряжению. Таким образом, положительная полуволна гармонического сигнала проходит через транзистор VT1 и выделяется на резисторе R3 со сдвигом по фазе 180°, а отрицательная полуволна проходит через транзистор VT2 без изменения фазы. В результате напряжение на резисторе R3 будет иметь вид, получаемый после двухполупериод-ного выпрямления входного сигнала. Удвоитель работает в широ­ком диапазоне частот, который определяется типом примененных транзисторов.

Умножитель на транзисторах. Схема удвоения частоты входно­го гармонического сигнала (рис. 14.20) состоит из двух каскадов. Каждый каскад увеличивает частоту сигнала в 2 раза. Положи­тельная полуволна входного сигнала с амплитудой 0,5 В открывает транзистор VT2. Отрицательная полуволна проходит через транзи­стор VT1. Эти два сигнала суммируются на резисторе R2. Транзи­стор VT2 инвертирует входной сигнал, a VT1 — не инвертирует. На резисторе R2 формируется сигнал двухполупериодного выпрямле­ния. Этот сигнал через эмиттерный повторитель подается на второй каскад. Амплитуда выходного сигнала повторителя равна 0,6 В.

преобразователи на микросхемах - student2.ru преобразователи на микросхемах - student2.ru

Рис. 14.20 Рис. 14.21

Диодный умножитель. Входное гармоническое напряжение (рис. 14.21) подается на трансформатор. Во вторичной обмотке трансформатора включены две фазосдвигающие цепочки. В них про­исходит сдвиг фазы гармонического сигнала на 120°. В результате этого через диоды проходят сигналы, сдвинутые по фазе. На вход­ном сопротивлении транзистора они суммируются. Третья гармони­ка суммарного пульсирующего сигнала выделяется контуром. Но­миналы элементов фазосдвигающих цепочек рассчитаны на частоту 400 Гц.

преобразователи на микросхемах - student2.ru

Рис. 14.22

Удвоитель частоты. В удвоителе (рис. 14.22) применены тран­зисторы с одинаковыми параметрами, входящие в состав интеграль­ной микросхемы К159НТ1. Это позволяет уменьшить паразитные со­ставляющие больше чем на 20 дБ. Оптимальный режим удвоения получается при напряжении смещения на базах, равном 0,4 В. Удвоитель работает в широком диапазоне частот (от нижней гра­ничной частоты пропускания трансформатора до 70 МГц) и при входном сигнале 0,5 В.

Детекторный удвоитель частоты. В основу такого удвоителя (рис. 14.23) положено двухполупериодное выпрямление на двух транзисторах VT1 и VT2. Отрицательная полуволна выходного на­пряжения ОУ проходит через транзистор VT1, а положительная - через транзистор VT2. Резисторы R6 и R8 выбраны одинаковыми, поэтому коэффициенты передачи обеих полуволн равны. Для устра­нения искажений формы выходного сигнала, вызванных влиянием порогового начального участка характеристик транзисторов, ис­пользуется ОУ с нелинейной ООС. С помощью потенциометра R2 на выходе ОУ устанавливается напряжение, соответствующее минимальным искажениям выходного сигнала. Удвоитель хорошо ра­ботает при треугольной форме входного сигнала. Для этой формы входного сигнала можно последовательно включать до десяти схем умножения.

преобразователи на микросхемах - student2.ru преобразователи на микросхемах - student2.ru

Рис. 14.23 Рис. 14.24

преобразователи на микросхемах - student2.ru

Рис. 14.25

Дифференциальный удвоитель. Удвоитель частоты (рис. 14.24) состоит из эмиттерного повторителя, собранного на транзисторе VT1, и усилительного каскада, построенного на транзисторе VT2. Входной сигнал через конденсатор С1 поступает в базу транзисто­ра VT1. В эмиттере этот сигнал складывается с сигналом, который проходит через транзистор VT2. Транзистор VT2 работает в нели­нейном режиме. Он пропускает отрицательные полуволны входного сигнала. Перевернутый по фазе входной сигнал будет вычитаться из сигнала эмиттерного повторителя. Уровень взаимодействующих сигналов можно регулировать резисторами R4 и R5. Резистор R4 управляет амплитудой отрицательной полуволны, а резистор R5 регулирует отношение эмиттерного сигнала к коллекторному.

Удвоитель частоты прямоугольного сигнала. Устройство (рис. 14.25, а) осуществляет преобразование входного сигнала гар­монической формы в прямоугольный сигнал с удвоенной частотой. Входной сигнал поступает в эмиттеры транзисторов VT1 и VT2. Транзистор VT1 работает в режиме ограничения. Второй транзи­стор также ограничивает сигнал, но за счет конденсатора С1 про­исходит сдвиг выходного сигнала на 90° относительно входного. Два ограниченных сигнала суммируются через резисторы R6 и R7. Суммарный двухполярный сигнал с помощью транзисторов VT3 и VT4 преобразуется в сигнал с удвоенной частотой. Эпюры сигналов в различных точках показаны на рис. 14.25, б. Удвоитель работает в широком диапазоне частот от 20 Гц до 100 кГц. Такой диапазон можно перекрыть, если применить со­ответствующую емкость конденсато­ра С1. Входной сигнал должен иметь амплитуду не менее 2 В.

Компенсационный умножитель. Умножитель частоты компенсацион­ного типа (рис. 14.26) построен на одном транзисторе. Ограниченный по амплитуде сигнал суммируется с входным сигналом гармонического вида на резисторе R1 В Deэvль тате на выходе формируется сигнал, частота которого в 3 раза вы ше частоты входного сигнала. Форма выходного сигнала не являет­ся идеально гармонической. Этот сигнал необходимо пропустить через фильтр, чтобы уменьшить уровень высоких гармоник На Фор­му сигнала в большой степени влияет уровень ограничения транзи­стора. При малых углах отсечки выходного сигнала значительно уменьшаются высокочастотные спектральные составляющие. Умень­шается при этом и амплитуда третьей гармоники.

преобразователи на микросхемах - student2.ru преобразователи на микросхемах - student2.ru

Рис. 14.26 Рис. 14.27

Делитель на ОУ. Делитель (рис. 14.27, а) построен на четектн-ропании суммарного сигнала на выходе ОУ. На Вход 1 полается сигнал гетеродина с амплитудой 0,1 В, на Вход 2 — преобразуемый сигнал. Зависимость амплитуды выходного сигнала от преобразуе­мого сигнала показана на рис. 14.27, б.

Глава 15

ПРЕОБРАЗОВАТЕЛИ СИГНАЛОВ

Преобразователи сигналов могут быть двух видов ди­скретные и аналоговые. К дискретному виду преобразования следует отнести выделение характерных точек исследуемого сигна­ла — фиксацию момента перехода его через нуль, выделение экстре­мальных значений и т. д. Аналоговые преобразователи осуществля­ют возведение сигнала в квадрат, изменение фазы гармонического колебания, интегрирование и дифференцирование исследуемого сиг­нала.

Наиболее распросграненными способами преобразования явля­ются дифференцирование и интегрирование. Простейшим устройст­вом, выполняющим эти функции, является ДС-цепочка Выход­ной сигнал этой цепочки будет пропорционален ее постоянной вре­мени. При интегрировании постоянная времени RC должна быть больше времени действия входного сигнала. С увеличением RC для повышения точности интегрирования уменьшают амплитуду выход­ного сигнала. С помощью пассивной RС-цепи не удается получить одновременно достаточно большой выходной сигнал и малую ошиб­ку интегрирования. Значительно лучшие результаты получаются если применять интеграторы на ОУ. Электронные интеграторы по­зволяют простыми средствами получить высокую точность интегри­рования и одновременно большое выходное напряжение. Аналогич­ное можно сказать и про дифференцирование, но здесь задача ре­шается несколько проще. Дифференцирующее устройство на ОУ мо­жет быть с успехом заменено транзисторным усилителем с ОБ. Входное сопротивление этого усилителя составляет единицы ом. В то же время амплитуда выходного сигнала определяется сопро­тивлением резистора, стоящего в цепи коллектора. Такой каскад обладает существенным преимуществом перед ОУ. Динамический диапазон транзисторного каскада значительно больше, чем каскада на ОУ.

Среди преобразователей сигналов важное место занимают ана­лого-цифровые и цифроаналоговыс преобразователи. Эти преобра­зователи являются неотъемлемой частью всех устройств, которые входят в комплекс цифровой обработки различных сигналов. Для обработки аналоговых сигналов на ЭВМ применяют аналого-циф­ровые преобразователи. Они преобразуют непрерывные сигналы в двоичные числа, которые затем вводятся в ЭВМ. После того как ЭВМ закончит обработку двоичных чисел, результаты выводятся на регистрирующие устройства, которые записывают информацию в аналоговом виде. Для этих целей применяют цнфроаналоговые пре­образователи, осуществляющие перевод двоичных чисел в непре­рывный сигнал.

Промышленностью выпускаются специальные интегральные ми­кросхемы, с помощью которых можно построить аналого-цифровые преобразователи с различным быстродействием и точностью. В со­став серии К.240 входят аналоговые узлы: К240СА — нуль-орган, К240КТ1 — разрядный ключ, К.240К.Т2 — четыре коммутируемых ключа, К240КТ5 — три разрядных ключа средней точности. Эти ин­тегральные микросхемы позволяют построить преобразователь на 10 разрядов. Время преобразования 100 мкс при входном напряже­нии от — 5 до +5 В. В основу преобразования положен принцип поразрядного кодирования.

В этой главе будут рассмотрены преобразователи, которые лег­ко реализуются на элементах широкого применения. Рассмотренные преобразователи не являются прецизионными устройствами: они не отличаются высокой точностью и большим быстродействием, по­скольку имеют небольшое число разрядов. Для увеличения числа разрядов в этих преобразователях необходимо более тщательно настраивать все входящие элементы. Схемы включения корректи­рующих элементов ОУ, которые применяются в различных устрой­ствах, можно найти в гл. 1.

ФАЗОЧУВСТВИТЕЛЬНЫЕ СХЕМЫ

Номограмма для расчета фазового сдвига. С помощью но­мограммы (рис. 15.1) можно определить фазовый сдвиг на любой заданной частоте в рсзистивно-емкостиых цепях. При известных со­противлениях резистора, емкости конденсатора и частоты проводит­ся прямая, соединяющая значения на шкалах сопротивлений и ем­кости. Эта прямая пересекает пунктирную линию АВ в точке М. Через эту точку и значение частоты проводят прямую, пересекаю­щую шкалу фаз. Для случая R — 10 кОм, С — 10 нФ, f = 0,1 МГц по номограмме получаем значение фазы 162°. В тех случаях когда известен фазовый сдвиг, то можно определить номиналы R и С. Прямая между значениями частоты и фазы даст точку М через которую с любым наклоном проводится прямая, определяющая значения R и С.

преобразователи на микросхемах - student2.ru

Рис. 15.1

Фазовращатель на полевых транзисторах. Устройство (рис. 15.2) предназначено для изменения фазы гармонического сигнала в диа­пазоне от 0 до 180° при изменении управляющего напряжения от — 1 до +1 В. В основу фазовращателя положен мост, выполненный на элементах R2, R8, С2, СЗ, VT2. В качестве управляющего эле­мента используется полевой транзистор VT2, сопротивление кото­рого меняется в зависимости от управляющего сигнала. Кроме то­го, включение этого транзистора в исток транзистора VT1 обеспе­чивает большое сопротивление для входного сигнала. Выходной сигнал фазопращательного моста подается на затвор транзистора VT3. Коэффициент усиления схемы равен 0,7. Амплитуда входного сигнала 0,3 В, а частота 100 кГц.

преобразователи на микросхемах - student2.ru преобразователи на микросхемах - student2.ru преобразователи на микросхемах - student2.ru

Рис. 15.2 Рис. 15.3 Рис. 15.4

Сложение и вычитание сиг­налов.Устройство (рис. 15.3) осуществляет одновременно сложение и вычитание двух сигналов. Если на оба входа подать гармонические сигна­лы, близкие по частоте, то на выходе будут два сигнала бие­ний. Для настройки схемы не­обходимо подать на оба вхо­да однл и тот же сигнал, тогда на коллекторе транзистора VT3 должен быть нулевой сигнал. В противном случае следует изменить сопротивление рези­стора R6.

Индикатор нуля.На вход (рис. 15.4) подается гармонический сигнал с частотой 10 кГц. На выходе формируется импульсный сиг­нал с удвоенной частотой следования. Длительность импульса при­близительно равна 1/6 периода гармонического сигнала. Формиро­вание импульсного сигнала происходит в результате насыщения транзисторов VT1 и VT2. Эти транзисторы открываются на 1/3 по­лупериода входного сигнала. Длительность открывания транзисто­ров зависит от цепочек R1C1 и R2C2. При действии отрицательной полуволны зарядный ток конденсатора С1, протекающий через R1 и базовый переход транзистора VT1, открывает VT1. Во время дей­ствия положительной полуволны входного сигнала конденсатор С1 разряжается через резистор R1. Аналогичные процессы протекают в цепи С2, R2 и VT2 (при действии положительной полуволны че­рез VT2 протекает зарядный ток конденсатора С2, который при отрицательной полуволне разряжается через R2]. В результате в точке соединения коллекторов транзисторов VTI и VT2 будет выделяться двухполярный импульсный сигнал с длительностью им­пульса меньше полупериода входного сигнала. Транзистор VT3 преобразует двухполярный сигнал в однополярный. При появлении положительного импульса транзистор VT3 открывается со стороны базы. Эмиттер в этом случае будет подключен к нулевой шине через диод VD2. Отрицательный импульс откроет транзистор VT3 со стороны эмиттера. База в это время будет подключена к нулю через диод VD1. В результате на выходе сформируется импульсный сигнал отрицательной полярности. Устройство работает в широком диапазоне частот. Для частот меньше 10 кГц необходимо увеличить емкости конденсаторов С1 и С2, а для частот больше — уменьшить.

преобразователи на микросхемах - student2.ru

Рис. 15.5

преобразователи на микросхемах - student2.ru

Рис. 15.6

Пороговый преобразователь срельефностн»сигнала. В схеме (рис. 15.5, а) осуществляется преобразование входного сигнала, имеющего плавный переход от положительного к отрица!ельному значению, в сигнал со скачкообразным переходом. Ширина зоны между разнополярнымн участками сигнала определяется порогами открывания диодов VD1 и VD2. Резистор R2 регулирует порог для положительного сигнала, а резистор R9 — для отрицательного. По­роги управляются независимо один от другого. С помощью рези­сторов R2 и R9 можно вывести диоды в проводящее состояние. В этом случае порог для положительного сигнала смещается в об­ласть отрицательных значений (и наоборот). На рис. 15.5, б при­веден пример увеличения «рельефности» входного синусоидального сигнала и зависимость фазы отсеченного сигнала от управляющего напряжения на движках потенциометров R2 (R9).

Двухканальный широкополосный фазовращатель.Фазовраща­тель (рис. 15.6) имеет равномерную амплитудно-частотную харак­теристику. Сигналы на Выходе 1 и Выходе 2 сдвинуты по фазе на 90° в диапазоне частот от 100 Гц до 10 кГц. Из-за разброса номи­налов элементов цепочки RC каскады следует подстраивать с по­мощью переменных резисторов.

Наши рекомендации